
PERVASIVE DATA MANAGEMENT

 MAIN MEMORY DATABASES
(MMDB)

Prof. Fabio A. Schreiber
Dipartimento di Elettronica e Informazione

Politecnico di Milano

© Fabio A. Schreiber MMDB1

MAIN MEMORY (MM) DATABASES Vs.
DISK RESIDENT (DR) DATABASES

M THE PRIMARY COPY OF DATA LIVES
PERMANENTLY IN MAIN MEMORY

M THERE CAN BE A BACKUP COPY
RESIDENT ON DISK

D THE PRIMARY COPY OF DATA IS
PERMANENTLY DISK RESIDENT

D DATA CAN BE TEMPORARILY CACHED IN MAIN
MEMORY FOR ACCESS SPEED-UP

© Fabio A. Schreiber MMDB2

MAIN MEMORY Vs. DISK STORAGE
1. ACCESS TIME OF MM ORDERS OF MAGNITUDE LESS

THAN FOR DISKS (102 nsec vs. 10 msec)
2. MMDBMS FOOTPRINTS RANGE BETWEEN 200 KB AND 2

MB
3. MM IS NORMALLY VOLATILE; PERMANENT MM STILL

EXPENSIVE
4. DISKS HAVE HIGH FIXED COST PER ACCESS

INDEPENDENT OF THE AMOUNT OF RETRIEVED DATA
(BLOCK-ORIENTED)

5. MM DOES NOT CARE OF SEQUENTIAL ACCESS
6. MM DATA ARE MORE VULNERABLE TO SOFTWARE

ERRORS SINCE THEY CAN BE DIRECTLY ACCESSED BY
THE PROCESSOR

© Fabio A. Schreiber MMDB3

MAIN MEMORY Vs. DISK STORAGE
RELIABILITY

EVEN IF SPECIAL HARDWARE CAN
ENHANCE MM RELIABILITY, PERIODIC
BACKUP IS NECESSARY

– MM CONTENT LOST IF SYSTEM CRASHES
– IF A SINGLE MEMORY BOARD FAILS THE

ENTIRE MACHINE MUST BE POWERED DOWN
LOOSING ALL THE DATA

– WHATEVER POWER BACKUP FOR MM IS, IN
TURN, LESS RELIABLE THAN PASSIVE
MAGNETIC MEDIA

© Fabio A. Schreiber MMDB4

MAIN MEMORY Vs. DISK STORAGE
DATA STRUCTURES

MMDB ARE NOT DRDB WITH A VERY LARGE
CACHE

– CACHED DATA ARE ACCESSED THROUGH INDEXES
DESIGNED FOR DISK ACCESS

– ACCESS IS MADE THROUGH A BUFFER MANAGER
WHICH, GIVEN THE DISK ADDRESS, CHEKS IF THE
RELEVANT BLOCK IS IN MM-CACHE AND THEN COPIES IT
TO THE MM APPLICATION WORKING AREA

IN MMDB DATA ARE ACCESSED BY DIRECTLY
REFERRING TO THEIR MEMORY ADDRESS

© Fabio A. Schreiber MMDB5

APPLICATION PROGRAM INTERFACE FOR
DRDB

MAIN MEMORY

APPLICATION PROGRAM
WORKING SPACE

APPLICATION
PROGRAM

PRIVATE BUFFERS

DBMS WORKING SPACE

DBMS

SYSTEM BUFFERS

INDEX BLOCKS

© Fabio A. Schreiber MMDB6

APPLICATION PROGRAM INTERFACE FOR
MMDB (1)

MAIN MEMORY

APPLICATION PROGRAM
WORKING SPACE

APPLICATION
PROGRAM

PRIVATE BUFFERS

DBMS WORKING SPACE

DBMS

INDEX BLOCKS

DATABASE SPACE

© Fabio A. Schreiber MMDB7

APPLICATION PROGRAM INTERFACE FOR
MMDB (2)

MAIN MEMORY

APPLICATION PROGRAM
WORKING SPACE

APPLICATION
PROGRAM

DBMS WORKING SPACE

DBMS

INDEX BLOCKS

DATABASE SPACE

© Fabio A. Schreiber MMDB8

HYBRID MM-DR DATABASE SYSTEMS
• SOME DB ARE SO LARGE THEY WILL NEVER FIT

IN MM
• DATA CAN BELONG TO DIFFERENT CLASSES

– HOT: FREQUENTLY ACCESSED, LOW VOLUME, TIMING
SENSITIVE (e.g. bank account records)

– COLD: RARELY ACCESSED, VOLUMINOUS, NON TIME
CRITICAL (e.g. bank customers records , historical
records)

• HAVE A COLLECTION OF DATABASES SOME MM
OTHERS DR

• OBJECTS CAN MIGRATE AMONG THE DBMS,
CHANGING THEIR STRUCTURE ACCORDINGLY
(e.g. IBM IMS Fast Path)

© Fabio A. Schreiber MMDB9

ISSUES IN A MMDB

• CONCURRENCY CONTROL
• COMMIT PROCESSING
• DATA REPRESENTATION
• ACCESS METHODS
• QUERY PROCESSING
• RECOVERY
• OBJECTS MIGRATION

© Fabio A. Schreiber MMDB10

MMDBMS CONCURRENCY CONTROL
• LOCK DURATION IS SHORT

– REDUCED CONTENTION
– LARGE GRANULES (UP TO THE ENTIRE DATABASE)

• SERIAL TRANSACTION PROCESSING
– ALMOST ELIMINATES THE NEED OF CC
– HIGHLY REDUCE CACHE FLUSHES

• CC STILL NECESSARY WHEN
– MIXED LENGTH TRANSACTIONS COEXIST
– A MULTIPROCESSOR SYSTEM SHARES THE DB

AMONG THE DIFFERENT UNITS

© Fabio A. Schreiber MMDB11

MMDBMS CONCURRENCY CONTROL

TRADITIONAL IMPLEMENTATION
– LOCK (HASH) TABLES HOLDING ENTRIES FOR

CURRENTLY LOCKED OBJECTS
– NO LOCK INFORMATION ATTACHED TO DATA

MAIN MEMORY IMPLEMENTATION
– STUFF SOME BITS OF LOCKING INFORMATION INTO

DATA
• 1ST BIT IS THE X-LOCK SET BIT
• 2ND BIT IS THE WAITING FOR BIT
• IF MORE THAN ONE TRANSACTION IS WAITING (RARE),

USE THE LOCK TABLE AND THE WAKE-UP PROCEDURE
– T&S INSTRUCTION NEEDED TO AVOID MULTIPLE

SETTING

© Fabio A. Schreiber MMDB12

MMDBMS COMMIT PROCESSING
DURABILITY OF A TRANSACTION ASKS FOR A
LOG RECORD TO BE WRITTEN INTO STABLE
STORAGE BEFORE COMMITTING

LOGGING AFFECTS RESPONSE TIME AND
THROUGHPUT

– WAITS EXIST FOR THE DISK SERVICE
– THE LOG FILE IS A BOTTLENECK

TYPICAL LOG RECORD LENGTH 400 BYTES
– 40 BYTES FOR BEGIN/END
– 360 BYTES FOR OLD/NEW VALUES

© Fabio A. Schreiber MMDB13

MMDBMS COMMIT PROCESSING

• STORE THE LOG TAIL (< 100 PAGES) IN A SMALL
AMOUNT OF STABLE MM
– REDUCE RESPONSE TIME
– DOESN’T AFFECT BOTTLENECKS

• PRECOMMIT TRANSACTIONS RELEASE LOCKS
AS SOON AS THE LOG RECORD HAS BEEN
WRITTEN EVEN IF NOT YET PROPAGATED TO
DISK. COMMIT IS DONE AFTER DISK WRITING
– DOESN’T AFFECT SERIALISATION BECAUSE THE LOG IS

SEQUENTIAL
– DOESN’T REDUCE RESPONSE TIME
– ENHANCE CONCURRENCY (RESPONSE TIME OF OTHERS)

© Fabio A. Schreiber MMDB14

MMDBMS COMMIT PROCESSING

• GROUP COMMIT ACCUMULATES ENOUGH
COMMIT RECORDS TO FILL UP A LOG PAGE
AND THEN FLUSHES IT TO DISK
– REDUCES THE TOTAL NUMBER OF DISK ACCESSES
– RELIEVES THE LOG BOTTLENECK

© Fabio A. Schreiber MMDB15

DATA REPRESENTATION
RELATIONAL DATA ARE USUALLY REPRESENTED
AS FLAT FILES (FS)

– TUPLES ARE STORE SEQUENTIALLY
– ATTRIBUTE VALUES ARE EMBEDDED IN THE TUPLES
– ACESS IS LOCAL

• SPACE CONSUMING OWING TO DUPLICATE VALUES
• INEFFICIENT OWING TO SEQUENTIALITY OF COMPUTATIONS
• NEED OF INDEXES

© Fabio A. Schreiber MMDB16

DATA REPRESENTATION
DOMAIN STORAGE

• ACCESS LOCALITY IS NOT AN ISSUE IN MMDB
• COMPACTNESS IS AN ISSUE FOR BOTH DATA

AND INDEXES
• PRECLUDE VALUE DUPLICATION BY

GROUPING VALUES IN DOMAINS (DS)
– ENUMERATED TYPES LARGER THAN THE POINTER

SIZE ARE STORED IN THE TUPLE AS POINTERS TO
THE DOMAIN TABLE VALUES

– DOMAIN TABLES CAN BE SHARED AMONG
DIFFERENT COLUMNS AND EVEN AMONG DIFFERENT
RELATIONS

– FIXED SIZE TUPLES

© Fabio A. Schreiber MMDB17

DATA REPRESENTATION
DOMAIN STORAGE

VALUE 1

VALUE 2

VALUE n

© Fabio A. Schreiber MMDB18

MMDB ACCESS METHODS
 GOALS

– DISK ORIENTED STRUCTURES
• MINIMISE DISK ACCESSES
• MINIMISE STORAGE SPACE

– MAIN MEMORY STRUCTURES
• REDUCE OVERALL COMPUTATION TIME
• USE AS LITTLE MEMORY AS POSSIBLE

ONLY POINTERS TO DATA CAN BE STORED IN
THE INDEXING STRUCTURES AND NOT THE DATA
VALUES THEMSELVES.

© Fabio A. Schreiber MMDB19

MMDB ACCESS METHODS

• HASHING
– FAST LOOKUP AND UPDATING
– NOT SPACE EFFICIENT
– DOESN’T SUPPORT RANGE QUERIES

• TREE INDEXING
– WITH A SINGLE POINTER GET ACCESS BOTH TO AN

ATTRIBUTE VALUE AND TO THE ENTIRE TUPLE
– POINTERS ARE FIXED (SHORT) LENGTH
– SUITED FOR RANGE QUERIES

© Fabio A. Schreiber MMDB20

MMDB ACCESS METHODS
THE T-Tree

THE T-Tree IS A DATA STRUCTURE WHOSE
ANCESTORS ARE B-Trees AND AVL-Trees

– IT IS BINARY LIKE AVL-Trees
• SEARCH IS ESSENTIALLY BINARY

– A T-Node CONTAINS MANY ELEMENTS LIKE B-Trees
• STORAGE AND UPDATE EFFICIENCY

– INSERTIONS AND DELETIONS USUALLY MOVE DATA

WITHIN A SINGLE NODE (like IN B-Trees)

– REBALACING IS DONE BY NODE ROTATION (like in
AVL Trees) BUT IS MUCH LESS FREQUENT

© Fabio A. Schreiber MMDB21

THE T-Tree

INTERNAL NODE

LEAF HALF LEAF

© Fabio A. Schreiber MMDB22

T-Tree NODE STRUCTURE

CONTROL

PARENT PNTR OF A

RIGHT CHILD PNTR OF A LEFT CHILD PNTR OF A

DATA1 DATA2 DATAn-1 DATAn

MIN ELEMENT MAX ELEMENT

LEFT SUBTREE RIGHT SUBTREE

GLB OF A LUB OF A

MINCOUNT ≤ n ≤ MAXCOUNT

© Fabio A. Schreiber MMDB23

T-Tree REBALANCING

A

B

BL

AR

BR

X
2

B

BL
A

BR AR

LL (RR) INSERTION

SINGLE ROTATION

A

B

BL

AR

C

CL CR

X

LR (RL) INSERTION

DOUBLE ROTATION
C

B

BL CL

A

CR AR

2

© Fabio A. Schreiber MMDB24

T-Tree REBALANCING

REGULAR

LR

ROTATION

SPECIAL

LR

ROTATION

© Fabio A. Schreiber MMDB25

INDEXING WITH DOMAIN STORAGE
RING STORAGE

RING SELECT INDEX

VALUE-TO -TUPLE / TUPLE-TO-VALUE

VALUE 1
VALUE 2

VALUE n

RelationS attI

Domain attI

BIDIRECTIONAL RING JOIN INDEX

ON A FOREIGN KEY (R.a=S.b)

Relation R
S.b R.a

© Fabio A. Schreiber MMDB26

QUERY PROCESSING

• QUERY PROCESSORS FOR DRDB FOCUS ON
REDUCING DISK ACCESS COSTS

• QUERY PROCESSORS FOR MMDB MUST FOCUS
ON PROCESSING COSTS
– OPERATION COSTS VARY FROM SYSTEM TO SYSTEM
– NO GENERAL OPTIMISATION TECHNIQUE

• IMPLEMENTATION OF RELATIONAL OPERATORS
SHOULD BENEFIT OF MM DATA AND INDEX
REPRESENTATION
– NESTED-LOOP JOIN PREFERRED TO SORT-MERGE JOIN

© Fabio A. Schreiber MMDB27

NESTED-LOOP JOIN WITH RING INDEX

Relation S S.b

VALUE 1
VALUE 2

VALUE n

Domain attI

SELECT *
FROM R,S
WHERE R.a=S.b

Relation R R.a

© Fabio A. Schreiber MMDB28

BACKUP AND RECOVERY

• PERFORM BACKUPS OR CHECKPOINTS
TO A DISK DURING NORMAL OPERATION
– LOG AS MUCH INFORMATION AS POSSIBLE

TO PERFORM A FULL AND CONSISTENT
RECOVERY

– KEEP THE OVERHEAD AS SMALL AS
POSSIBLE

• RECOVER FROM FAILURES
– AS FAST AS POSSIBLE

© Fabio A. Schreiber MMDB29

NEW
PAGE

TM

OB

UNDO RECORD BACKWARD
LOG

OLD
PAGE

TM

OB

REDO RECORD FORWARD
LOG

LOGGING TECHNIQUES FOR DRDB

© Fabio A. Schreiber MMDB30

t1

SHORT PROCEDURE
(TRANSACTION ABORT)

LONG PROCEDURE
(MEDIA FAILURE)

t1 D1 D2

RECOVERY PROCEDURES FOR DRDB

DB DUMP

FORWARD
LOG

t2 t3

DB

t2

t3

DB

BACKWARD
LOG

TRANSACTIONS COMMITTED
BEFORE t2

FORWARD
LOG

© Fabio A. Schreiber MMDB31

BACKUP AND RECOVERY FOR MMDB
• PERFORM BACKUPS AND CHECKPOINTS
 TO A DISK DURING NORMAL OPERATION

– USE VERY LARGE BLOCK SIZES TO
ENHANCE EFFICIENCY

– TRANSACTION CONSISTENT OR ACTION-
CONSISTENT CHECKPOINTS REQUIRE
SYNCHRONIZATION WITH TRANSACTIONS

• RECOVER FROM FAILURES
– TRANSFER FROM DISK TAKES A LONG TIME

• TRANSFER BLOCKS ON DEMAND
• USE DISK ARRAYS TO WORK IN PARALLEL

© Fabio A. Schreiber MMDB32

OBJECT MIGRATION

• IN DRDB RECORDS FROM DIFFERENT
RELATIONS ARE OFTEN CLUSTERED IN THE
SAME DISK PAGES TO ENHANCE PERFORMANCE

• IN MMDB NO SUCH NEED EXIST

– TUPLES HAVE OFTEN ONLY POINTERS TO DOMAIN
VALUES FOR THE ATTRIBUTES

• WHEN MIGRATION SHOULD OCCUR (e.g. in hybrid
systems) DYNAMIC CLUSTERING IS TO BE MADE
AND INDEXES REBUILT ACCORDINGLY

© Fabio A. Schreiber MMDB33

BIBLIOGRAPHY
• AA.VV. – Special Issue on Main-Memory Database Systems -

IEEE Data Engineering, Vol. 36, n. 2, June 2013
• C. Bobineau et Al. - PicoDBMS: Scaling Down Database

Techniques for the Smartcard - Proc. 26th Int. VLDB Conf.,
2000, pp.

• D.J. DeWitt et Al. - Implementation techniques for main
memory database systems - Proc. ACM SIGMOD Conf., June
1984, pp. 1-8

• H. Garcia-Molina, K. Salem - Main Memory Database Systems:
An Overview - IEEE- Transactions KDE, Vol. 4, n. 6, 1992, pp.
509-516

• T.J. Lehman, M.J. Carey - A Study of Index Structures for
Main Memory Database Management Systems - Proc. 12th Int.
VLDB Conf., August 1986, pp.294-303

	PERVASIVE DATA MANAGEMENT�� MAIN MEMORY DATABASES (MMDB)
	MAIN MEMORY (MM) DATABASES Vs.�DISK RESIDENT (DR) DATABASES
	MAIN MEMORY Vs. DISK STORAGE
	MAIN MEMORY Vs. DISK STORAGE�RELIABILITY
	MAIN MEMORY Vs. DISK STORAGE�DATA STRUCTURES
	APPLICATION PROGRAM INTERFACE FOR DRDB
	APPLICATION PROGRAM INTERFACE FOR MMDB (1)
	APPLICATION PROGRAM INTERFACE FOR MMDB (2)
	HYBRID MM-DR DATABASE SYSTEMS
	ISSUES IN A MMDB
	MMDBMS CONCURRENCY CONTROL
	MMDBMS CONCURRENCY CONTROL
	MMDBMS COMMIT PROCESSING
	MMDBMS COMMIT PROCESSING
	MMDBMS COMMIT PROCESSING
	DATA REPRESENTATION
	DATA REPRESENTATION�DOMAIN STORAGE
	DATA REPRESENTATION�DOMAIN STORAGE
	MMDB ACCESS METHODS
	MMDB ACCESS METHODS
	MMDB ACCESS METHODS�THE T-Tree
	THE T-Tree
	T-Tree NODE STRUCTURE
	T-Tree REBALANCING
	T-Tree REBALANCING
	INDEXING WITH DOMAIN STORAGE�RING STORAGE�
	QUERY PROCESSING
	NESTED-LOOP JOIN WITH RING INDEX
	BACKUP AND RECOVERY
	LOGGING TECHNIQUES FOR DRDB
	RECOVERY PROCEDURES FOR DRDB
	BACKUP AND RECOVERY FOR MMDB
	OBJECT MIGRATION
	BIBLIOGRAPHY

